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Abstract. As part of a project to compute atomic data for the spectral modeling of iron K lines, we report calculations and
comparisons of atomic data for K-vacancy states in Fe . The data sets include: (i) energy levels, line wavelengths, radia-
tive and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoabsorption cross
sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital represen-
tations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections.
It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take
part in the decay pathways of this ion. As a result, the accuracy of the present A-values is estimated at 10% while that of the
Auger rates at 15%. The calculations of collisional excitation and photoabsorption cross sections take into account the effects
of radiation and spectator Auger dampings. In collisional excitation, these effects cause significant attenuation of resonances
leading to a good agreement with a simpler method where resonances are excluded. In photoabsorption, resonances converging
to the K thresholds display symmetric profiles of constant width that causes edge smearing.
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1. Introduction

The iron K lines are among the most interesting features in
astronomical X-ray spectra. These lines appear in emission in
almost all natural X-ray sources, they are located in a relatively
unconfused spectral region and have a well-known plasma di-
agnostics potential. They were first reported in the rocket ob-
servations of the supernova remnant Cas A (Serlemitsos et al.
1973), in X-ray binaries (Sanford et al. 1975; Pravdo et al.
1977) and in clusters of galaxies (Serlemitsos et al. 1977),
the latter thus manifesting the presence of extragalactic nu-
clear processed material. Observations of the galactic black-
hole candidate Cyg X-1 showed that the line strength varied
according to the spectral state (Barr et al. 1985; Marshall et al.
1993), and Tanaka et al. (1995) found that the Fe K lines from
Seyfert galaxies were relativistically broadened and redshifted
which suggested their formation within a few gravitational radii
of a black hole.

Recent improvements in the spectral capabilities and sen-
sitivity of satellite-borne X-ray telescopes (Chandra, XMM–
Newton) have promoted the role of Fe K lines in diagnostics,
a trend that will continue to grow with the launch of future in-
struments such as Astro-E2 and Constellation-X. Such plasma
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diagnostics ultimately rely on the knowledge of the micro-
physics of line formation and hence on the accuracy of the
atomic data. In spite of the line identifications by Seely et al.
(1986) in solar flare spectra and the laboratory measurements of
Beiersdorfer et al. (1989, 1993), Decaux & Beiersdorfer (1993)
and Decaux et al. (1995, 1997), the K-vacancy level structures
of Fe ions remain incomplete as can be concluded from the
critical compilation of Shirai et al. (2000). With regards to the
radiative and Auger rates, the highly ionized members of the
isonuclear sequence, namely Fe –Fe , have received
much attention (Jacobs et al. 1989), and the comparisons by
Chen (1986) and Kato et al. (1997) have brought about some
degree of data assurance. For Fe ions with electron occupan-
cies greater than 9, Jacobs et al. (1980) and Jacobs & Rozsnyai
(1986) have carried out central field calculations on the struc-
ture and widths of various inner-shell transitions, but these have
not been subject to independent checks and do not meet current
requirements of level-to-level data.

The spectral modeling of K lines also requires accurate
knowledge of inner-shell electron impact excitation rates and,
in the case of photoionized plasmas, of partial photoioniza-
tion cross sections leaving the ion in photoexcited K-vacancy
states. In this respect, Palmeri et al. (2002) have shown that
the K-threshold resonance behavior is dominated by radiation
and Auger dampings which induce a smeared edge. Spectator
Auger decay, the main contributor of the K-resonance width,
has been completely ignored in most previous close-coupling
calculations of high-energy continuum processes in Fe ions
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(Berrington et al. 1997; Donnelly et al. 2000; Berrington &
Ballance 2001; Ballance et al. 2001). The exception is the re-
cent R-matrix computation of electron excitation rates of Li-
like systems by Whiteford et al. (2002) where it is demon-
strated that Auger damping is important for low-temperature
effective collision strengths.

The present report is the first in a project to systematically
compute atomic data sets for the modeling of the Fe K spectra.
The emphasis of this project is on both accuracy and complete-
ness. For this purpose we make use of several state-of-the-art
atomic physics codes to deliver for the entire Fe isonuclear se-
quence: energy levels; wavelengths, radiative and Auger rates,
electron impact excitation and photoabsorption cross sections.

In this paper we present calculations of the radiative and
Auger decay manifold of the n = 2 K-vacancy states, the inner-
shell electron impact excitation rates of Fe , and the to-
tal photoionization cross sections of Fe  of Fe , as a
test case of the numerical methods and the relevance of various
different physical effects. Our goal in doing this is threefold:
(i) To understand the competing physical effects which play a
significant role in the K vacancy states of iron ions; (ii) To cal-
culate as accurately as possible the atomic data needed for as-
trophysical modelling of Fe ; (iii) To develop tools which
can be applied to the rest of the Fe isonuclear sequence, for
which experimental tests and other calculations are less plenti-
ful. Particular attention is given to the process of assessing ac-
curacy and consistency of the data sets produced with respect to
experiment and other calculations. We will show that, in com-
parison with previous work, there is room for improvement. We
will also show that by comparison of calculations which incor-
porate various treatments of the atomic structure and scattering
problem it is possible to disentangle and identify the relative
importance of the physical processes which affect the accuracy
of any calculation.

2. Breit–Pauli Hamiltonian

We have found the Li-like Fe system to be an unusually versa-
tile workbench for the magnetic interactions, a fact that perhaps
has not been fully appreciated in previous work. Thus prior to
the description of the numerical details of the codes, we include
a concise summary of the relativistic Breit–Pauli Hamiltonian
which is used throughout our computational portfolio and will
be central in the discussion of results.

The Breit–Pauli Hamiltonian for an N-electron system is
given by

Hbp = Hnr + H1b + H2b (1)

where Hnr is the usual non-relativistic Hamiltonian. The one-
body relativistic operators

H1b =

N∑
n=1

fn(mass) + fn(d) + fn(so) (2)

represent the spin–orbit interaction, fn(so), and the non-
fine structure mass-variation, fn(mass), and one-body
Darwin, fn(d), corrections. The two-body corrections

H2b =
∑
n>m

gnm(so) + gnm(ss) + gnm(css) + gnm(d) + gnm(oo) , (3)

usually referred to as the Breit interaction, include, on the one
hand, the fine structure terms gnm(so) (spin–other-orbit and mu-
tual spin–orbit) and gnm(ss) (spin–spin); and on the other, the
non-fine structure terms: gnm(css) (spin–spin contact), gnm(d)
(Darwin) and gnm(oo) (orbit–orbit).

The radiative rates (A-values) for electric dipole and
quadrupole transitions are respectively given in units of s−1 by
the expressions

AE1(k, i) = 2.6774 × 109 (Ek − Ei)3 1
gk

S E1(k, i) (4)

AE2(k, i) = 2.6733 × 103 (Ek − Ei)
5 1
gk

S E2(k, i) (5)

where S (k, i) is the line strength, gk is the statistical weight of
the upper level, and energies are in Rydberg units and lengths
in Bohr radii.

Similarly for magnetic dipole and quadrupole transitions,
the A-values are respectively given by

AM1(k, i) = 3.5644× 104 (Ek − Ei)3 1
gk

S M1(k, i) (6)

AM2(k, i) = 2.3727× 10−2 (Ek − Ei)5 1
gk

S M2(k, i) . (7)

Due to the strong magnetic interactions in this ion, the magnetic
dipole line strength is assumed to take the form

S M1(k, i) = |〈|k|P|i〉|2 (8)

where

P = P0 + P1 =

N∑
n=1

{l(n) + σ(n)} + Prc . (9)

P0 is the usual low-order M1 operator while P rc includes the
relativistic corrections established by Drake (1971).

Although the main astrophysical interest is for E1 Kα de-
cays, it is shown here that some of the forbidden transitions
display A-values comparable with the E1 type and thus must
be taken into account for accuracy. Furthermore, in the case of
the 1s2s2p 4P0

5/2 state, radiative decay can only occur through
forbidden transitions.

3. Numerical methods

In the present work we employ three different computational
packages to study the properties of the n = 2 vacancy states of
Li-like Fe .

3.1. 

, an extension by Badnell (1986, 1997)
of the atomic structure program  (Eissner
et al. 1974), computes fine-structure level energies, radia-
tive and Auger rates in a Breit–Pauli relativistic frame-
work. Single electron orbitals, Pnl(r), are constructed by
diagonalizing the non-relativistic Hamiltonian, Hnr, within
a statistical Thomas–Fermi–Dirac model potential V(λnl)
(Eissner & Nussbaumer 1969). The λnl scaling parameters are
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optimized variationally by minimizing a weighted sum of the
LS term energies. LS terms are represented by configuration-
interaction (CI) wavefunctions of the type

Ψ(LS ) =
∑

i

ciφi . (10)

Continuum wavefunctions are constructed within the distorted-
wave approximation. Relativistic fine-structure levels and rates
are obtained by diagonalizing the Breit–Pauli Hamiltonian in
intermediate coupling. The one- and two-body operators – fine
structure and non-fine structure (see Sect. 2) – have been fully
implemented to order α2Z4 where α is the fine-structure con-
stant and Z the atomic number. The relativistic corrections to
the M1 operator (see Eq. (9)) have been incorporated in -
 by Eissner & Zeippen (1981).

Fine tuning (semi-empirical corrections) – which is re-
sourceful for treating states that decay through weak relativistic
couplings (e.g. intercombination transitions) – takes the form
of term energy corrections (TEC). By considering the relativis-
tic wavefuntion, ψr

i , in an perturbation expansion of the non-
relativistic functions ψnr

i ,

ψr
i = ψ

nr
i +
∑
j�i

ψnr
j ×
〈ψnr

j |H1b + H2b|ψnr
i 〉

Enr
i − Enr

j

, (11)

a modified Hnr is constructed with improved estimates of the
differences Enr

i −Enr
j so as to adjust the centers of gravity of the

spectroscopic terms to the experimental values. This procedure
therefore relies on the availability of measured data.

3.2. 

In the Hartree–Fock plus relativistic corrections code ()
by Cowan (1981), a set of orbitals are obtained for each elec-
tronic configuration by solving the Hartree–Fock equations for
the spherically averaged atom. The equations are the result of
the application of the variational principle to the configuration
average energy. Relativistic corrections are also included in
this set of equations, i.e. the Blume–Watson spin–orbit, mass-
variation and one-body Darwin terms. The Blume–Watson
spin–orbit term comprises the part of the Breit interaction that
can be reduced to a one-body operator.

The multiconfiguration Hamiltonian matrix is constructed
and diagonalized in the LS Jπ representation within the frame-
work of the Slater–Condon theory. Each matrix element is a
sum of products of Racah angular coefficients and radial inte-
grals (Slater and spin–orbit integrals), i.e.

〈a|H|b〉 =
∑

i

ca,b
i Ia,b

i . (12)

The radial parameters, Ia,b
i , can be adjusted to fit the available

experimental energy levels in a least-squares approach. The
eigenvalues and the eigenstates obtained in this way (ab initio
or semi-empirically) are used to compute the wavelength and
oscillator strength for each possible transition.

Autoionization rates can be calculated using the perturba-
tion approach

Aa =
2π
�

V2
ε

=
2π
�
| < αLS Jπ|H|α′L′S ′J′εl LS Jπ > |2

(13)

where α summarizes the coupling scheme and the remaining
set of quantum numbers necessary to define the initial state,
and α′ plays a similar role for the threshold state to which the
continuum electron, εl, is coupled. The kinetic energy of
the free electron, ε, is determined as the difference between
the average energy of the autoionizing and the threshold config-
urations. The radial wave functions of the initial and final states
are optimized separately. Both states are calculated in interme-
diate coupling but CI is accounted for only in the autoionizing
states, i.e. no interaction between threshold electronic config-
urations is introduced. The continuum orbitals, P εl(r), are so-
lutions of the Hartree–Plus–Statistical-Exchange equations for
fixed positive values of the Lagrangian multipliers, ε (Cowan
1981).

3.3. 

The Breit–Pauli R-matrix package () is widely used
in electron–ion scattering and in radiative bound–bound and
bound–free calculations. It is based of the close-coupling ap-
proximation of Burke & Seaton (1971) whereby the wavefunc-
tions for states of an N-electron target and a colliding electron
with total angular momentum and parity Jπ are expanded in
terms of the target eigenfunctions

ΨJπ = A
∑

i

χi
Fi(r)

r
+
∑

j

c jΦ j . (14)

The functions χi are vector coupled products of the target
eigenfunctions and the angular components of the incident-
electron functions, Fi(r) are the radial part of the latter and A
is an antisymmetrization operator. The functionsΦ j are bound-
type functions of the total system constructed with target
orbitals; they are introduced to compensate for orthogonality
conditions imposed on the Fi(r) and to improve short-range
correlations. The Kohn variational gives rise to a set of coupled
integro-differential equations that are solved by R-matrix tech-
niques (Burke et al. 1971; Berrington et al. 1974, 1978, 1987)
within a box of radius, say, r ≤ a. In the asymptotic region
(r > a) exchange between the outer electron and the target
ion can be neglected, and the wavefunctions can be then ap-
proximated by Coulomb solutions. Resonance parameters are
obtained with the  module developed by Quigley &
Berrington (1996) and Quigley et al. (1998) whereby the reso-
nance positions and widths are obtained from fits of the eigen-
phase sum. Normalized partial widths are defined from projec-
tions onto the open channels.

Breit–Pauli relativistic corrections have been introduced in
the R-matrix suite by Scott & Burke (1980), Scott & Taylor
(1982), but the two-body terms (see Eq. (3)) have not as yet
been implemented. Inter-channel coupling is equivalent to CI
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Table 1. Ion model key. AST1–AST3: present work (). HFR1–HFR3: Present work (). HFR4:  calculation by Jacobs
et al. (1989). BPR1: Present work (). COR: Cornille data set from Kato et al. (1997). SAF: Safronova data set from Kato et al. (1997) and
Safronova & Shlyaptseva (1996). MCDF: Multiconfiguration Dirac–Fock calculation by Chen (1986).

Feature AST1 AST2 AST3 HFR1 HFR2 HFR3 HFR4 BPR1 COR SAF MCDF
Orthogonal orbital basis Yes Yes Yes Yes No No No Yes Yes Yes Yes
CI from n > 2 complexes No No Yes No No Yes No No No Yes Yes
Breit interaction No Yes Yes Yes Yes Yes Yes No No Yes Yes
QED effects No No No No No No No No No Yes Yes
Semi-empirical corrections No No Yes No No Yes No No No No No

in the atomic structure context, and thus the  method
presents a formal and unified approach to study the decay prop-
erties of both bound states and resonances.

4. Radiation and Auger dampings

When an electron or a photon are sufficiently energetic to ex-
cite a ground-state ion to a K-vacancy resonance, the latter
can either fluoresce or autoionize (Auger decay). Illustrating
these processes with the resonances converging to the n = 2
K thresholds in the dielectronic recombination of Fe  and
the photoexcitation of Fe , that is

{
Fe23+(1s22s) + e−

Fe22+(1s22s2) + hν

}
→


Fe22+(1s2s2nl)
Fe22+(1s2s2pnl)
Fe22+(1s2p2nl)

 , (15)

the decay manifold can be outlined as follows:


Fe22+(1s2s2nl)
Fe22+(1s2s2pnl)
Fe22+(1s2p2nl)

 →
{

Fe23+(1s22s) + e−

Fe23+(1s22p) + e−

}
(16)

→
{
Fe23+(1s2nl) + e−

}
(17)

→


Fe22+(1s22s2) + hν
Fe22+(1s22s2p) + hν
Fe22+(1s22p2) + hν

 (18)

→
{

Fe22+(1s22snl) + hν
Fe22+(1s22pnl) + hν

}
· (19)

The participator KLn Auger channels (Eq. (16)) can be ade-
quately represented in the  method by including in the
close-coupling expansion (14) configuration-states within the
n = 2 complex of the three-electron target. On the other hand,
in the KLL Auger process in Eq. (17), also referred to as spec-
tator Auger decay, the nl Rydberg electron remains a specta-
tor. Its formal handling in the close-coupling approach is thus
severely limited to low-n resonances as it implies the inclusion
of target states with nl orbitals. Moreover, it has been recently
shown by Palmeri et al. (2002) that KLL is the dominant Auger
decay mode in the Fe sequence by no less than 75%, and leads
to photoabsorption cross sections populated with damped reso-
nances of constant widths as n→ ∞which causes the smearing
of the edge.

Transitions in Eqs. (18) and (19) lead to radiation damp-
ing. The former, to be referred to as the Kn transition array,
are driven by the np → 1s optical electron jump. The latter is
the Kα transition array (2p → 1s) where again the nl Rydberg

electron remains a spectator; its dominant width is therefore
practically independent of n (Palmeri et al. 2002).

The present treatment of Auger and radiative dampings
within the  framework uses the optical potential described
by Gorczyca & Badnell (1996) and Gorczyca & Badnell
(2000), where the resonance threshold energy acquires an
imaginary component. For example, the core energy of the
closed channel 1s2s2pnl is now expressed as

E1s−1 → E1s−1 − i(Γa
1s−1 + Γ

r
1s−1 )/2, (20)

where Γa
1s−1 and Γr

1s−1 are respectively the Auger and radiative
widths of the 1s2s2p core. In the case of radiation damping, the
optical potential modifies the R-matrix to the complex form

Rj j′(E) = R0
j j′(E) + 2

∑
nn′

d0
jnd

0
j′n′ (γ

−1)nn′ , (21)

where R0
j j′ are the R-matrix elements without damping, d 0

jn are

(N + 1)-electron dipole matrix elements and γ−1 is a small in-
verted complex matrix defined in Eq. (100) of Robicheaux et al.
(1995).

The calculations of collisional excitation and photoioniza-
tion with the  method are carried out with the standard
R-matrix computer package of Berrington et al. (1995) for the
inner region and on the asymptotic codes  (Gorczyca
& Badnell 1996) and 0 (Badnell, unpublished)
to determine cross sections including radiation and Auger
dampings.

5. Ion models

Since the present study of the Fe Li-like system has been ap-
proached as a test case, the atomic data are computed with sev-
eral ion models and extensively compared with other data sets.
This methodology is destined to bring out the dominant physi-
cal effects and the flaws and virtues of the different numerical
packages. Additionally, it provides statistics for determining
accuracy ratings, something which has not been fully estab-
lished in the past. The main features of each approximation are
summarized in the key in Table 1.

Three calculations with  are listed: AST1,
the ion is modeled with states from configurations within the
n = 2 complex and excludes the Breit interaction, i.e. the rela-
tivistic two-body operators in Eq. (3); AST2, the same as AST1
but takes into account the Breit interaction; and AST3, which
includes the latter, single and double excitations to the n = 3
complex and TEC. AST3 allows the evaluation of CI effects
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from higher complexes and the fine-tuning of the data for accu-
racy. Orthogonal orbital bases are generated for each of these
three approximations by minimizing the sum of the energies
of all the LS terms comprising the respective ion representa-
tions. A dilemma quickly arises in  calcula-
tions regarding the ion model in the context of Auger processes,
whether to use Li-type orbitals (parent ion) or those of the He-
like remnant. By comparing with results from the more formal
 method, it becomes clear that the latter type is the supe-
rior choice. On the other hand, the situation is less certain for
the Kα radiative data due to the absence of noticeable differ-
ences. In this case, and due to better agreement with previous
work, the A-values have been calculated with parent orbitals.

Three computations with  are discussed: HFR1 is
equivalent to AST2 since the ion is modeled with states within
the n = 2 complex with an orthogonal orbital basis. The 1s and
2s orbitals are obtained by minimizing the energy of the 1s 22s
term whereas the 2p is optimized with 1s22p. HFR2 employs
the ion model of HFR1 but with non-orthogonal orbital bases
generated for each configuration by minimizing their average
energy. Comparisons of HFR1 and HFR2 will thus give esti-
mates of core relaxation effects (CRE) which have been long
known (Howat 1978; Howat et al. 1978; Breuckmann 1979) but
generally neglected in the more recent work on the Fe isonu-
clear sequence. In HFR3 non-orthogonal bases are used, full
n = 3 CI is taken into account and the radial integrals are fitted
to reproduce experimental energies (this approximation should
then be comparable to AST3).

BPR1 is a computation with  wherein the He-like tar-
get is represented with the 19 levels from the 1s2, 1s2s, and
1s2p configurations. Since  does not take into account
the Breit interaction, BPR1 should be comparable with AST1.

We also compare with four external data sets (see Table 1).
HFR4 contains wavelengths, radiative rates and satellite line in-
tensity factors computed with  by Jacobs et al. (1989); CI
is only taken into account within the n = 2 complex, and there-
fore this data set would be comparable to our HFR2. COR,
corresponds to the data set referred to as “Cornille” in Kato
et al. (1997) computed with the program  (Dubau
& Loulergue 1981), an earlier but similar implementation of
. SAF contains the data set “Safronova” in
Kato et al. (1997) and energy levels reported in Safronova &
Shlyaptseva (1996) that have been obtained with a 1/Z per-
turbation method. This method uses a hydrogenic orbital ba-
sis, the correlation energy includes contributions from both
discrete and continuum states, and the two-body operators of
the Breit interaction and QED effects are obtained in a hy-
drogenic approximation through screening constants. MCDF
(Chen 1986) contains data computed in a multiconfiguration
Dirac–Fock method that accounts for the Breit interaction and
QED in the transition energy, but excludes the exchange inter-
action between the bound and continuum electrons.

In our comparisons two external computations are ex-
cluded. Lemen et al. (1984) have computed Auger rates with
 in a single configuration approximation (i.e. no CI even
within n = 2), the Breit interaction is not taken into account
and the Coulomb integrals are empirically scaled by 15% to al-
low for neglected effects. The large discrepancies found with

our  calculations can be perhaps attributed their question-
able atomic model. Nahar et al. (2001) have computed with
 radiative and Auger widths for the 1s2s2p states. There
is good general accord with our BPR1 results, and since they
only report a reduced data set, it will not be further discussed.

6. Energies and wavelengths

In Table 2 we compare present level energies with experi-
ment and SAF. It may be seen that the energies obtained for
the K-vacancy levels with approximation AST1 are on average
10 ± 2 eV higher than experiment. By including the Breit in-
teraction (AST2), and mainly due to the contribution from the
non-fine structure two-body terms, this discrepancy is slightly
reduced to 8 ± 1 eV. Further consideration of CI, i.e. from con-
figurations of the n = 3 complex, does not bring about notice-
able improvements. Results obtained with BPR1 bear a similar
degree of discord with measured values. This systematic dif-
ference is partly due to neglected interactions (e.g. QED), but
also to the fact that orthogonal orbital bases are used to rep-
resent the ground and lowly excited bound states, in the one
hand, and the highly excited K-vacancy resonances on the other
thus discarding CRE. This assertion is supported by a compari-
son of average differences of HFR1 (excludes CRE) and HFR2
(includes CRE) with experiment: 5 ± 1 eV and 2 ± 1 eV re-
spectively. Fine tuning, invoked in approximations AST3 and
HFR3, results in theoretical levels within 1 eV of experiment,
comparable to the accuracy of 1.5 eV displayed by SAF. For
the unobserved 1s2s2p 4P0

5/2 level, an energy of 6.6285(3) keV
is predicted which is in good accord with value of 6.6283 keV
quoted by SAF.

In Table 3 we compare line wavelengths derived from the
AST3 and HFR3 approximations with experiment and other
theoretical results. The measurements have been made by
Beiersdorfer et al. (1993) with a high-resolution Bragg crys-
tal spectrometer on the Princeton Large Torus Tokamak. Our
previous criticism regarding the incompleteness of the exper-
imental data sets can be appreciated in this comparison. With
respect to experiment, differences with HFR3 and SAF are not
larger than 0.4 mÅ while those with AST3 and MCDF are
within 0.6 mÅ and 0.8 mÅ respectively. This level of accord
is somewhat outside of the average experimental precision of
0.23 mÅ. The values listed by COR and HFR4 are system-
atically shorter than experiment by ∼3 mÅ and ∼2 mÅ, re-
spectively. In general, differences between the AST3, HFR3,
SAF and MCDF data sets show scatters with standard devia-
tions not larger than 0.3 mÅ which can perhaps be taken as a
lower bound of the theoretical accuracy.

7. Radiative rates

A Li-like K-vacancy state decays radiatively by emitting a Kα
photon

1s2snk 2pmk (2S k+1)LJk → 1s22li
2L′Ji
+ λKα (22)

where the strong transitions are the dipole spin-allowed (2S k +

1 = 2), but intercombination transitions (2S k + 1 = 4) can
also take place via subtle relativistic couplings. Furthermore,
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Table 2. Comparison of level energies (keV) for the n = 2 complex of Fe  (see approximation key in Table 1). Experimental values from
Shirai et al. (2000).

i State Expt AST1 AST2 AST3 HFR1 HFR2 HFR3 BPR1 SAF

1 1s22s 2S1/2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 1s22p 2P0
1/2 0.04860 0.04801 0.04928 0.04778 0.04843 0.04850 0.04860 0.04854

3 1s22p 2P0
3/2 0.06457 0.06696 0.06689 0.06498 0.06446 0.06454 0.06457 0.06453

4 1s2s2 2S1/2 6.6004 6.6099 6.6070 6.6003 6.6051 6.6018 6.6004 6.6072 6.6011

5 1s(2S)2s2p(3P0) 4P0
1/2 6.6137 6.6202 6.6189 6.6131 6.6175 6.6129 6.6131 6.6177 6.6135

6 1s(2S)2s2p(3P0) 4P0
3/2 6.6167 6.6253 6.6227 6.6169 6.6221 6.6178 6.6173 6.6230 6.6171

7 1s(2S)2s2p(3P0) 4P0
5/2 6.6376 6.6342 6.6285 6.6330 6.6295 6.6265 6.6283

8 1s(2S)2s2p(3P0) 2P0
1/2 6.6535 6.6624 6.6598 6.6525 6.6567 6.6538 6.6537 6.6605 6.6534

9 1s(2S)2s2p(3P0) 2P0
3/2 6.6619 6.6732 6.6697 6.6623 6.6665 6.6641 6.6618 6.6708 6.6624

10 1s(2S)2p2(3P) 4P1/2 6.6710 6.6781 6.6770 6.6706 6.6753 6.6709 6.6708 6.6764 6.6717

11 1s(2S)2s2p(1P0) 2P0
1/2 6.6764 6.6866 6.6841 6.6764 6.6814 6.6784 6.6766 6.6831 6.6765

12 1s(2S)2s2p(1P0) 2P0
3/2 6.6792 6.6896 6.6867 6.6791 6.6839 6.6812 6.6790 6.6869 6.6795

13 1s(2S)2p2(3P) 4P3/2 6.6793 6.6868 6.6855 6.6792 6.6829 6.6790 6.6786 6.6853 6.6798

14 1s(2S)2p2(3P) 4P5/2 6.6850 6.6946 6.6917 6.6850 6.6900 6.6865 6.6857 6.6932 6.6856

15 1s(2S)2p2(1D) 2D3/2 6.7027 6.7137 6.7118 6.7027 6.7082 6.7050 6.7029 6.7112 6.7042

16 1s(2S)2p2(3P) 2P1/2 6.7046 6.7159 6.7128 6.7041 6.7099 6.7068 6.7048 6.7141 6.7052

17 1s(2S)2p2(1D) 2D5/2 6.7090 6.7211 6.7176 6.7089 6.7147 6.7120 6.7096 6.7189 6.7097

18 1s(2S)2p2(3P) 2P3/2 6.7224 6.7349 6.7315 6.7225 6.7268 6.7247 6.7219 6.7329 6.7230

19 1s(2S)2p2(1S) 2S1/2 6.7415 6.7541 6.7514 6.7414 6.7468 6.7448 6.7412 6.7519 6.7428

Table 3. Comparison of wavelengths (Å) for K transitions in Fe  (see approximation key in Table 1). Transition labels from Gabriel (1972)
and tokamak measurements (uncertainties in brackets) by Beiersdorfer et al. (1993).

Label k i Expt AST3 HFR3 HFR4 COR SAF MCDF
p 4 2 1.89219(25) 1.8922 1.8924 1.8894 1.8924 1.8927
o 4 3 1.89680(20) 1.8971 1.8970 1.8946 1.8969 1.8973
v 5 1 1.8748 1.8748 1.8729 1.8748 1.8752
u 6 1 1.87347(35) 1.8737 1.8736 1.8715 1.8712 1.8738 1.8742

7 1 1.8706
7 3 1.8890

r 8 1 1.86325(20) 1.8639 1.8634 1.8618 1.8611 1.8635 1.8640
q 9 1 1.86104(15) 1.8610 1.8611 1.8589 1.8610 1.8613
i 10 2 1.8720 1.8722 1.8706 1.8722 1.8725
h 10 3 1.8768 1.8768 1.8752 1.8766 1.8771
t 11 1 1.85693(20) 1.8568 1.8570 1.8552 1.8543 1.8571 1.8571
s 12 1 1.8563 1.8563 1.8544 1.8535 1.8563 1.8564
g 13 2 1.8697 1.8701 1.8680 1.8699 1.8702
f 13 3 1.8745 1.8746 1.8725 1.8724 1.8743 1.8747
e 14 3 1.87246(35) 1.8729 1.8726 1.8705 1.8703 1.8727 1.8730
k 15 2 1.86325(20) 1.8630 1.8632 1.8610 1.8601 1.8630 1.8631
l 15 3 1.8677 1.8677 1.8656 1.8652 1.8674 1.8676
d 16 2 1.8626 1.8627 1.8608 1.8594 1.8628 1.8629
c 16 3 1.8674 1.8672 1.8653 1.8672 1.8673
j 17 3 1.86576(12) 1.8661 1.8658 1.8635 1.8631 1.8659 1.8660
b 18 2 1.8576 1.8579 1.8555 1.8542 1.8578 1.8578
a 18 3 1.86207(30) 1.8623 1.8624 1.8600 1.8593 1.8622 1.8622
n 19 2 1.8523 1.8526 1.8526 1.8488 1.8523 1.8521
m 19 3 1.85693(20) 1.8570 1.8570 1.8571 1.8539 1.8566 1.8565
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Table 4. Comparison of A-values (1013 s−1) for K transitions in Fe  (see approximation key in Table 1). Note: a ± b ≡ a × 10±b.

k i AST1 AST2 AST3 HFR1 HFR2 HFR3 HFR4 COR SAF MCDF
4 2 9.76−1 9.46−1 9.27−1 9.62−1 1.03+0 1.00+0 9.51−1 8.75−1 8.25−1
4 3 9.85−1 9.84−1 9.52−1 1.04+0 1.08+0 1.07+0 9.39−1 9.07−1 8.36−1
5 1 4.06−1 4.98−1 4.97−1 3.72−1 4.08−1 2.92−1 4.00−1 4.92−1 4.86−1
6 1 1.40+0 1.55+0 1.55+0 1.26+0 1.40+0 9.60−1 1.50+0 1.47+0 1.59+0 1.54+0
7 1 6.18−4 6.18−4 6.16−4
7 3 1.93−5 1.94−5 1.94−5
8 1 2.88+1 3.06+1 3.01+1 3.04+1 3.10+1 3.29+1 2.99+1 2.88+1 3.19+1 2.89+1
9 1 4.70+1 4.71+1 4.71+1 4.72+1 4.94+1 4.86+1 4.91+1 4.87+1 4.43+1

10 2 1.90+0 2.02+0 2.17+0 1.72+0 1.89+0 1.88+0 2.90+0 2.10+0 1.98+0
10 3 1.77−2 7.70−3 9.12−3 1.68−2 1.79−2 1.60−2 1.00−1 9.30−3 1.27−2
11 1 2.01+1 1.82+1 1.86+1 1.87+1 2.01+1 1.76+1 2.07+1 2.03+1 1.79+1 1.68+1
12 1 8.92−1 5.90−1 4.19−1 1.05+0 6.57−1 1.25+0 5.00−1 4.41−1 7.78−2 3.23−1
13 2 6.21−2 6.63−3 4.51−3 7.77−3 9.03−3 1.06−2 0.0 +0 2.40−3 3.42−3
13 3 8.01−1 1.01+0 1.06+0 7.54−1 8.11−1 8.13−1 9.00−1 8.23−1 1.01+0 9.67−1
14 3 3.11+0 3.11+0 3.58+0 2.81+0 3.10+0 3.21+0 3.40+0 3.37+0 3.51+0 3.17+0
15 2 3.13+1 3.17+1 3.14+1 3.14+1 3.26+1 3.24+1 3.16+1 3.15+1 3.27+1 2.96+1
15 3 3.39+0 4.32+0 3.64+0 3.37+0 3.49+0 3.26+0 3.50+0 3.09+0 3.90+0 3.80+0
16 2 5.39+1 5.35+1 5.31+1 5.40+1 5.62+1 5.53+1 5.58+1 5.39+1 5.44+1 4.97+1
16 3 1.58+1 1.63+1 1.60+1 1.62+1 1.66+1 1.65+1 1.29+1 1.65+1 1.53+1
17 3 2.09+1 2.09+1 2.05+1 2.12+1 2.19+1 2.17+1 2.17+1 2.11+1 2.16+1 1.98+1
18 2 1.15+0 7.70−1 9.69−1 1.16+0 1.21+0 1.24+0 1.10+0 1.25+0 8.63−1 7.57−1
18 3 6.16+1 6.04+1 6.07+1 6.18+1 6.43+1 6.37+1 6.31+1 6.20+1 6.21+1 5.64+1
19 2 9.78−1 1.20+0 1.03+0 1.18+0 1.11+0 1.06+0 2.00−1 8.89−1 1.09+0 1.08+0
19 3 2.46+1 2.42+1 2.40+1 2.43+1 2.56+1 2.49+1 2.92+1 2.44+1 2.43+1 2.22+1

we hereby demonstrate that in some cases the forbidden transi-
tions cannot be put aside.

In Table 4 we present transition probabilities computed in
the different approximations together with those from previous
work (HFR4, COR, SAF, and MCDF). In the following discus-
sion, we exclude the transitions 10–3, 12–1, 13–2 and 18–2 as
they are severely affected by cancellation and nothing further
can be asserted about their radiative properties.

In Fig. 1 we compare A-values computed in AST2 with
those in AST1 where significant differences are found. In
general, the inclusion of the Breit interaction (AST2) increases
rates; while the variations are not larger than 10% for the spin
allowed transitions that exhibit large rates (log A r > 14), the en-
hancement in the intersystem transitions (5–1, 6–1 and 13–3)
can be as large as 25%. Inclusion of CI from the n = 3 complex
leads to changes not larger than 2%, but the fitting with TEC, as
expected, causes differences mostly in the sensitive intersystem
transitions. By comparing HFR1 and HFR2 (see Table 4), it can
be concluded that CRE tend to increase A-values but seldom by
more than 10%; the exceptions are the transitions affected by
strong cancellation (e.g. 12–1 and 13–2).

In Fig. 2a the transition probabilities computed in approxi-
mation AST1 are compared with those by HFR2, COR, SAF
and MCDF. While there is as expected excellent agreement
with COR (within 10%), the data in HFR2 and SAF are on av-
erage higher by ∼5% with scatters of ±4% and ±12%, respec-
tively. Differences with MCDF are as large as 21%. The discord
with HFR2 is due to CRE while that with SAF and MCDF is
believed to be due to the contributions of the relativistic two-
body corrections excluded in AST1. This assertion is supported
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Fig. 1. Comparison of A-values (s−1) for K transitions in Fe  com-
puted with approximations AST1 and AST2. Differences are due to
the Breit interaction.

by a further comparison with the data in AST3 (Fig. 2b); now
the agreement with SAF and MCDF has improved to ∼10%
while discrepancies as large as 25% are found with COR where
the Breit interaction was neglected. The larger differences now
found with HFR3 (15%) are an indication that the Blume–
Watson screening in  does not account adequately for the
Breit interaction. The external HFR4 data set is in reason-
able agreement (within 20%) with HFR2 except for the large,
unexplainable discrepancies in the 10–2 (53%) and 19–2 (fac-
tor of 5) transitions. The outcome of this comparison give
us confidence on the accuracy ranking (∼10%) that can be
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Table 5. A-values (109 s−1) for K transitions with sizable magnetic
components computed in approximation AST3. E1: electric dipole.
M2: magnetic quadrupole. M1: magnetic dipole. M1*: magnetic
dipole computed with the uncorrected operator. Note: a±b ≡ a×10±b.

k i E1 M2 M1 M1*
7 1 0.0 6.16+0 0.0
7 3 0.0 0.0 1.94−1 6.11−7

10 3 9.07+1 5.04−1 0.0
13 2 3.99+1 5.19+0 0.0

assigned to the A-values in AST3 which we regard our best
approximation.

We have found that the K-vacancy states in Li-like iron, in
addition to their dipole allowed manifold, can also decay ra-
diatively via unusually strong magnetic transitions. As shown
in Table 5, the A-values for the M2 components in 10–3 and
13–2 are almost as large as their E1 counterparts, and there-
fore must be taken into account in order to maintain accuracy.
The situation becomes critical for the 1s2s2p 4P0

5/2 metastable
which is shown to decay through both M1 and M2 transitions
(see Table 5). It may be also appreciated that the M1 A-value
must be calculated with the relativistically corrected operator
(see Eq. (9)) since the difference with the uncorrected version
is 5 orders of magnitude. Chen et al. (1981) have assumed that
this state decays radiatively only via the M2 transition, and
quote a value of Ar = 6.57 × 109 s−1 in good agreement (7%)
with the present AM2 = 6.16 × 109 s−1.

8. Auger rates

While the radiative transition probabilities can be resolved sat-
isfactorily, the effects of magnetic couplings and CRE on the
Auger rates are more evident and thus larger the discrepancies.
A Li-like 1s2l2l′ level autoionizes through the reaction

1s2snk 2pmk (2S k+1)LJk → 1s2 2S0 + e− (23)

that ends up in the ground state of the He-like child ion. A com-
parison of rates is given in Table 6. As before, due to strong
cancellation effects, we exclude the 1s(2S)2s2p(3P0) 2P0

3/2

and 4P0
1/2 states from further discussion. By comparing data

from approximations AST1 and AST2 (see Fig. 3), it is
found significant sensitivity to the Breit interaction: states with
log Aa > 13 are in general reduced by no more than 11%, but
the smaller values show decrements as large as a factor of 2.
As shown in Table 7, the spin–spin interaction can cause dras-
tic changes in the rates, not only due to level coupling within
the parent bound configurations (bound–bound coupling) but
also involving the final continuum configuration (bound–free
coupling). An outstanding illustration of this correlation is the
1s2s2p 4P0

5/2 state which can only autoionize through the spin–
spin interaction. By contrast, CI from the n = 3 complex is
found to be relatively unimportant, but the TEC lead to notice-
able changes (25%) in the quartet states, e.g. 1s2p2 4PJ, that can
only decay through relativistic intersystem couplings that are
sensitive to level separation. The good agreement (∼10%) be-
tween AST1 and BPR1 for states with log Aa > 13 (see Table 6)
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Fig. 2. Comparison of  A-values (s−1) for K transi-
tions in Fe  with other approximations and external data sets. a)
AST1 with: HFR2 (triangles); COR (filled circles); SAF (circles); and
MCDF (filled triangles). b) AST3 with: HFR3 (triangles); COR (filled
circles); SAF (circles); and MCDF (filled triangles).
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Fig. 3. Comparison of Auger rates (s−1) for K-vacancy levels of
Fe  computed with approximations AST1 and AST2. Differences
are due to the Breit interaction.

reinforces the  numerical formulation of au-
toionization processes. CRE in Auger decay are disclosed in
the comparison of HFR1 and HFR2 where it is found that re-
laxation generally increases widths by (11±5)%. Discrepancies
between AST2 and HFR2 and AST3 and HFR3, which can be
as large as 45% for transitions with log Aa > 13, are believed
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Table 6. Comparison of Auger rates (1013 s−1) for K-vacancy states in Fe  (see approximation key in Table 1). Note: a ± b ≡ a × 10±b.

i AST1 AST2 AST3 HFR1 HFR2 HFR3 BPR1 COR SAF MCDF
4 1.40+1 1.44+1 1.43+1 1.25+1 1.34+1 1.34+1 1.45+1 1.41+1 1.47+1 1.42+1
5 1.88−2 1.45−3 1.33−3 1.36−2 1.54−2 1.09−2 1.57−2 1.19−2 5.57−3
6 7.96−2 3.55−2 3.91−2 5.74−2 6.56−2 4.31−2 7.07−2 8.40−2 8.85−2 1.71−2
7 0.00+0 1.99−4 1.97−4 0.00+0 0.00+0 0.00+0 0.00+0
8 3.67+0 4.29+0 4.24+0 2.94+0 3.42+0 2.92+0 3.87+0 3.80+0 3.21+0 4.83+0
9 8.99−4 2.34−2 1.41−2 5.01−2 3.01−2 8.57−2 1.55−2 3.02−2 5.74−2

10 2.55−2 2.53−2 3.37−2 1.58−2 1.94−2 2.25−2 3.15−2 3.24−2 1.53−2
11 7.43+0 6.87+0 6.77+0 6.91+0 7.16+0 7.55+0 7.74+0 7.40+0 8.96+0 7.00+0
12 1.10+1 1.10+1 1.07+1 9.77+0 1.05+1 1.04+1 1.11+1 1.10+1 1.21+1 1.05+1
13 1.55−1 8.44−2 9.66−2 1.18−1 1.37−1 1.41−1 1.78−1 1.58−1 1.01−1 4.30−2
14 2.31+0 2.20+0 2.61+0 1.75+0 2.05+0 2.12+0 2.56+0 2.36+0 2.64+0 2.17+0
15 1.39+1 1.26+1 1.25+1 1.17+1 1.29+1 1.30+1 1.38+1 1.35+1 1.44+1 1.27+1
16 1.06−1 9.16−2 9.39−2 6.60−2 8.17−2 8.11−2 7.01−2 9.50−2 9.08−2 1.64−1
17 1.52+1 1.44+1 1.37+1 1.31+1 1.44+1 1.43+1 1.47+1 1.46+1 1.60+1 1.42+1
18 3.44+0 3.49+0 3.28+0 3.05+0 3.37+0 3.27+0 3.19+0 3.29+0 4.16+0 3.14+0
19 3.09+0 3.00+0 2.92+0 2.40+0 2.77+0 2.76+0 2.75+0 2.83+0 3.21+0 2.72+0

to be due to both CRE and the oversimplified implementation
of the Breit interaction in .

In Fig. 4 Auger rates in AST1 and AST3 are compared with
COR, SAF, and MCDF. While agreement between COR and
AST1 is within 10%, it clearly deteriorates with AST3; this is
further evidence of the neglect of the Breit interaction by COR.
Significant differences are also found with SAF and MCDF in
particular for the smaller values (log Aa < 13). Focusing our
discussion on the larger rates, data by SAF are on average 8%
higher than AST1 (see Fig. 4a) which is a worrying outcome
because the inclusion of the Breit interaction in general de-
creases our rates thus magnifying the discrepancy. This can be
appreciated in the comparison of SAF with AST3 in Fig. 4b
where the larger differences are found for decays subject to
strong spin–spin bound–free correlation (see Table 7), and can
perhaps be attributed to its deficient treatment in the SAF ap-
proach. By contrast, the discord between AST1 and MCDF for
the larger rates (up to 32%) is reduced to within 15% when the
Breit interaction is taken into account.

The lack of data stability for Auger transitions with
log Aa < 13 is further put in evidence in the tricky decay of
the 1s2s2p 4P0

5/2 state. While there is good agreement with
Chen et al. (1981) for the dominant radiative M2 A-value
(see Sect. 7), their Auger rate of 6.53 × 109 s−1 is a factor
of 3 larger thus predicting a lower fluorescence yield (0.50)
than the present (0.76) for this state.

9. Br and Qd factors

In the spectral synthesis of dielectronic satellite lines, relevant
parameters for a k → i radiative emission are the branching
ratio

Br(k, i) ≡ Ar(k, i)
Ar(k) + Aa(k)

(24)

and the satellite intensity factor

Qd(k, i) ≡ gkBr(k, i)Aa(k) (25)
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Fig. 4. Comparison of  Auger rates (s−1) for K-
vacancy levels in Fe with previous data sets. a) AST1 with: COR
(filled circles); SAF (circles); and MCDF (filled triangles). b) AST3
with: COR (filled circles); SAF (circles); and MCDF (filled triangles).

where Ar(k, i), Ar(k) =
∑

i Ar(k, i), Aa(k) and gk are re-
spectively the A-value, total radiative width, Auger rate and
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Table 7. Spin–spin contribution to Auger rates (1013 s−1). SS: bound–
free spin–spin coupling neglected. SS*: bound–free spin–spin cou-
pling included. Note: a ± b ≡ a × 10±b.

i AST1 AST1+SS AST1+SS*
4 1.40+1 1.31+1 1.40+1
5 1.88−2 3.70−3 3.42−3
6 7.96−2 4.27−2 2.96−2
7 0.0 0.0 1.99−4
8 3.67+0 3.92+0 3.98+0
9 8.99−4 1.61−1 4.24−3

10 2.55−2 2.11−2 2.69−2
11 7.43+0 6.47+0 7.52+0
12 1.10+1 1.02+1 1.09+1
13 1.55−1 7.99−2 3.82−2
14 2.31+0 2.00+0 2.06+0
15 1.39+1 1.14+1 1.41+1
16 1.06−1 7.37−2 1.01−1
17 1.52+1 1.29+1 1.57+1
18 3.44+0 3.42+0 3.11+0
19 3.09+0 2.67+0 3.09+0

statistical weight of the upper k level. In Table 8 we compare
our best data set (AST3) with HFR4, COR, SAF and MCDF.
For Br > 0.1, the agreement is within 5% except for the COR
13–3 and the SAF 11–1 lines where it deteriorates to 9%,
and for the 10–2 (13%) and 16–3 (19%) lines in HFR4. The
13–3 transition, being an intercombination transition, is sensi-
tive to the atomic model while level 11 is subject to admixture.
For Br < 0.1, the accord is within 15% if transitions affected
with cancellation are put aside and the 19–2 transition in HFR4
is excluded. Furthermore, for Qd > 1013 s−1, the agreement
with HFR4, COR, SAF and MCDF is respectively within 20%,
10%, 25% and 15% except for the 19–3 transition in HFR4
where an anomalous discrepancy of almost a factor of 2 is en-
countered. For the smaller values, discrepancies up to a factor
of 9 do appear.

Beiersdorfer et al. (1992) have measured the strength of di-
electronic satellite lines in Li-like Fe excited by an electronic
beam which can be compared with the theoretical values given
by the relation

S d(k, i) =
Qd(k, i)
gI

1
Ek

2π2a3
0R2
(me

2R

)1/2
(26)

where Ek is the resonance energy, g I is the statistical weight
of the ground state of the recombining ion, and R and a 0 are
the Rydberg constant and Bohr radius, respectively. In Table 9
the ratios of the theoretical values to the measurements as de-
fined in Beiersdorfer et al. (1992) are tabulated. On average
the AST3, COR, SAF and MCDF ratios are within the exper-
imental uncertainty of 20%, but MCDF shows the best agree-
ment (10%). Overall, this comparison seems to suggest that the
experimental strengths should perhaps be scaled down by 5–
10%. It can also be seen that the strength for the m line obtained
in HFR4 is a factor of 2 larger than experiment.

10. Electron impact inner-shell excitation
of Fe XXIV

Inner-shell vacancy states in Fe  can also be poputaled by
electron impact excitation

1s22li
2LJi + e− → 1s2snk 2pmk (2S k+1)L′Jk

+ e−. (27)

As summarized by Pradhan & Gallagher (1992), collision
strengths for this reaction have been computed with a va-
riety of methods; for instance, distorted-wave (Bely-Dubau
et al. 1982) and Coulomb–Born–Exchange (Goett et al. 1984;
Sampson et al. 1985). More recently,  has been used by
Ballance et al. (2001) and Whiteford et al. (2002) using tar-
get representations that include doubly excited levels up to the
n = 3 shell. In the present calculation,  is used with a
target representation that includes only the 19 levels within the
n = 2 complex since exploratory calculations with n = 3 target
states lead to small differences in the energy region of inter-
est. We are particularly concerned with the effects of radiative
and Auger dampings and the convergence of the partial wave
expansion.

In Fig. 5 collision strengths for both an allowed (1–8) and
a forbidden (1–14) transition are shown. Although the back-
ground cross section is generally small (logΩ < −2), specially
for the latter transition type, they both display dense resonance
structures in the region just above threshold that rise by several
orders of magnitude. When radiation damping is introduced,
however, resonances are washed out in the allowed transition
and significantly attenuated in the forbidden case, trend that
is further completed when Auger damping is taken into ac-
count. In agreement with Whiteford et al. (2002), the effect of
the combined dampings on the low-temperature effective col-
lision strengths can be drastic as illustrated in Table 10 where
differences of factors are seen. The extreme case is the forbid-
den transition 1–13 that is overestimated by nearly two orders
of magnitude if damping is altogether neglected and by a fac-
tor of two with the exclusion of Auger damping. It must be
pointed out that the calculation by Ballance et al. (2001) of
inner-shell excitation of Li- and Be-like Fe does not take into
account Auger damping.

With regards to relativistic effects, the collision strengths
for the fine structure transitions have been calculated in three
different approximations: (a) LS -coupling followed by alge-
braic recoupling; (b) LS -coupling followed by recoupling with
term coupling coefficients that account for target fine structure
and (c) the relativistic Hamiltonian (Eq. (2)) that includes only
the one-body operators. Good agreement is found between ap-
proximations (b) and (c) while large discrepancies are found
with (a). These results indicate that relativistic effects must be
taken into account in the scattering formulation and that the
two-body corrections, which are not implemented in , are
small and can be neglected in this case.

Under coronal ionization conditions the temperatures of
maximum abundance of Fe  and Fe  are ∼2 × 10 7 K
and ∼4 × 107 K respectively; effective collision strengths must
be then computed at temperatures of up to 10 8 K. To en-
sure accuracy in the Maxwellian averaging integral, collision
strengths are computed in a range up to 4000 Ryd where partial



M. A. Bautista et al.: Atomic data for Fe  349

Table 8. Comparison of radiative branching ratios Br and satellite intensity Qd factors (1013 s−1). Approximation key is given in Table 1. Note:
a ± b ≡ a × 10±b.

Br(k, i) Qd(k, i)
k i AST3 HFR4 COR SAF MCDF AST3 HFR4 COR SAF MCDF
4 2 5.72−2 6.00−2 5.29−2 5.20−2 1.64+0 1.68+0 1.56+0 1.48+0
4 3 5.88−2 5.90−2 5.49−2 5.25−2 1.68+0 1.66+0 1.62+0 1.50+0
5 1 9.97−1 9.65−1 9.76−1 9.90−1 2.66−3 0.00+0 2.32−2 1.10−2
6 1 9.75−1 9.57−1 9.46−1 9.47−1 9.90−1 1.53−1 3.00−1 3.17−1 3.35−1 6.78−2
7 1 7.40−1 8.76−4
7 3 2.32−2 2.75−5
8 1 8.76−1 9.01−1 8.83−1 9.09−1 8.55−1 7.44+0 5.90+0 6.72+0 5.83+0 8.28+0
9 1 1.00+0 1.00+0 9.99−1 9.98−1 5.64−2 0.00+0 1.21−1 2.29−1

10 2 9.81−1 8.54−1 9.81−1 9.85−1 6.61−2 7.00−1 6.35−2 3.01−2
10 3 4.12−3 3.20−2 4.35−3 6.30−3 2.77−4 0.00+0 2.82−4 1.93−4
11 1 7.33−1 7.60−1 7.33−1 6.67−1 7.05−1 9.92+0 9.90+0 1.08+1 1.19+1 9.88+0
12 1 3.76−2 4.70−2 3.80−2 6.41−3 3.00−2 1.61+0 1.80+0 1.70+0 3.09−1 1.25+0
13 2 3.90−3 1.10−2 2.16−3 3.38−3 1.51−3 0.00+0 8.72−4 5.81−4
13 3 9.13−1 8.55−1 8.27−1 9.07−1 9.53−1 3.53−1 5.00−1 5.23−1 3.67−1 1.64−1
14 3 5.78−1 6.26−1 5.88−1 5.71−1 5.93−1 9.06+0 7.70+0 8.34+0 9.04+0 7.72+0
15 2 6.61−1 6.83−1 6.55−1 6.41−1 6.43−1 3.29+1 3.18+1 3.53+1 3.70+1 3.25+1
15 3 7.66−2 7.40−2 6.40−2 7.64−2 8.25−2 3.82+0 3.40+0 3.47+0 4.41+0 4.18+0
16 2 7.68−1 8.07−1 7.72−1 7.67−1 7.65−1 1.44−1 7.00−1 1.47−1 1.39−1 2.51−1
16 3 2.31−1 1.87−1 2.32−1 2.35−1 4.34−2 2.00−1 4.21−2 7.70−2
17 3 6.00−1 6.29−1 5.92−1 5.73−1 5.83−1 4.92+1 4.84+1 5.17+1 5.52+1 4.95+1
18 2 1.49−2 1.60−2 1.90−2 1.29−2 1.26−2 1.96−1 2.00−1 2.47−1 2.14−1 1.58−1
18 3 9.35−1 9.38−1 9.31−1 9.25−1 9.35−1 1.23+1 1.17+1 1.23+1 1.54+1 1.18+1
19 2 3.68−2 6.00−3 3.20−2 3.82−2 4.16−2 2.15−1 1.00−1 1.79−1 2.45−1 2.26−1
19 3 8.59−1 8.41−1 8.67−1 8.50−1 8.55−1 5.01+0 8.90+0 4.90+0 5.46+0 4.64+0

Table 9. Comparison of the dielectronic resonance strengths measured
by Beiersdorfer et al. (1992) with the theoretical values. The quantities
listed are the ratios of the theoretical values to the measurements as
defined in Beiersdorfer et al. (1992). Approximation key is given in
Table 1, and the transition labels are from Gabriel (1972).

Label AST3 HFR4 COR SAF MCDF
e 1.24 1.05 1.14 1.24 1.06
j(+l) 1.02 1.00 1.07 1.15 1.03
k(+a) 0.87 0.84 0.93 0.98 0.86
m 1.18 2.10 1.15 1.29 1.10
r 0.80 0.63 0.72 0.62 0.89
t(+s) 1.22 1.25 1.32 1.24 1.17
o 1.29 1.28 1.25 1.16
p 1.21 1.24 1.15 1.10

wave convergence becomes the main issue. The calculation is
performed in two stages: a full  calculation for total an-
gular momentum of the (N + 1)-electron system in the range
0 ≤ J ≤ 10 and a non-exchange calculation for higher J
which is carried out in LS coupling and then recoupled with
term coupling coefficients. Very good agreement is found in
the high-energy region with the Coulomb–Born–Exchange col-
lision strengths by Goett et al. (1984).

Maxwellian averaged collision strengths are listed in
Table 11 for the electron-temperature range 5 ≤ log T ≤ 8 for
all the n = 2 K transitions. Infinite-temperature limits are also
included. In order to compare with previous work, the data sets
are scaled with the techniques developed by Burgess & Tully
(1992). The effective collision strength Υ(T ) is mapped onto

Table 10. Effective collision strengths at 3.0 × 105 K for transitions
from the 1s22s 2S1/2 ground level to the K-vacancy levels of Fe 
showing the effects of radiation and Auger dampings. ND: computed
without damping. RD: radiation damping is included. R+AD: radia-
tion and Auger dampings are included. Note: a ± b ≡ a × 10±b.

i k ND RD R+AD
1 4 2.96−3 1.19−3 1.11−3
1 5 1.26−3 5.43−4 5.05−4
1 6 2.23−3 1.55−3 1.19−3
1 9 3.19−3 2.94−3 2.92−3
1 10 3.28−5 1.60−5 1.49−5
1 13 6.36−5 4.37−6 2.05−6
1 14 1.70−5 6.41−6 2.61−6
1 15 4.07−6 3.71−6 1.46−6
1 17 6.54−6 6.11−6 1.98−6
1 18 3.34−6 3.28−6 2.08−6

the reduced formΥr(Tr) where the infinite temperature T range
is scaled to the finite interval 0 ≤ T r ≤ 1. For an allowed tran-
sition the scaling is given by the relations

Tr = 1 − ln(c)
ln(κT/∆E + c)

(28)

Υr(Tr) =
Υ(T )

ln(κT/∆E + e)
(29)

with ∆E being the transition energy, κ the Boltzmann constant
and c an adjustable scaling parameter. For an electric dipole
transition the important limit points are

Υr(0) = Ω(0) (30)
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Table 11. Electron impact effective collision strengths for K transitions within the n = 2 complex of Fe .

Electron Temperature (K)
i k 1.00+5 5.00+5 1.00+6 5.00+6 1.00+7 5.00+7 1.00+8 ∞
1 4 1.13−3 1.09−3 1.06−3 1.03−3 1.03−3 1.04−3 1.06−3 1.16−3
1 5 5.18−4 4.98−4 4.88−4 4.52−4 4.19−4 2.89−4 2.23−4 3.50−5
1 6 1.31−3 1.13−3 1.06−3 9.62−4 9.01−4 6.89−4 6.02−4 2.41−4
1 7 1.42−3 1.40−3 1.39−3 1.31−3 1.21−3 7.90−4 5.69−4 0.0
1 8 1.08−3 1.08−3 1.09−3 1.16−3 1.23−3 1.82−3 2.24−3 2.44−3
1 9 2.92−3 2.94−3 2.99−3 3.26−3 3.55−3 5.66−3 7.25−3 7.93−3
1 10 1.51−5 1.48−5 1.47−5 1.47−5 1.46−5 1.45−5 1.46−5 1.52−5
1 11 8.87−4 8.89−4 8.96−4 9.37−4 9.82−4 1.39−3 1.86−3 1.68−3
1 12 9.53−4 9.39−4 9.32−4 8.84−4 8.25−4 6.49−4 8.00−4 1.49−4
1 13 2.68−6 1.84−6 1.61−6 1.18−6 9.48−7 4.11−7 2.50−7 9.89−10
1 14 2.79−6 2.44−6 2.21−6 1.68−6 1.38−6 6.64−7 4.46−7 2.24−8
1 15 1.54−6 1.41−6 1.35−6 1.20−6 1.10−6 8.87−7 8.03−7 8.89−8
1 16 7.42−6 7.30−6 7.29−6 7.24−6 7.13−6 6.93−6 6.89−6 6.49−6
1 17 2.24−6 1.87−6 1.75−6 1.50−6 1.36−6 1.06−6 9.59−7 1.47−7
1 18 2.14−6 2.05−6 2.01−6 1.81−6 1.64−6 1.25−6 1.09−6 2.32−8
1 19 6.61−5 6.59−5 6.64−5 6.69−5 6.65−5 6.64−5 6.69−5 7.02−5
2 4 1.05−4 9.45−5 8.49−5 7.19−5 7.04−5 8.04−5 9.05−5 8.66−5
2 5 2.98−4 2.90−4 2.73−4 2.38−4 2.21−4 1.57−4 1.20−4 9.35−7
2 6 6.54−4 5.56−4 4.91−4 3.86−4 3.51−4 2.45−4 1.86−4 1.94−13
2 7 7.35−5 5.72−5 3.92−5 1.13−5 6.22−6 1.52−6 8.14−7 2.51−14
2 8 1.26−3 1.25−3 1.25−3 1.30−3 1.35−3 1.56−3 1.71−3 2.24−3
2 9 1.55−4 1.18−4 1.03−4 8.46−5 7.78−5 5.50−5 4.22−5 2.42−13
2 10 7.59−4 7.49−4 7.42−4 7.07−4 6.66−4 5.06−4 4.36−4 1.64−4
2 11 1.78−4 1.74−4 1.74−4 1.78−4 1.82−4 2.05−4 2.20−4 2.82−4
2 12 1.16−4 7.73−5 6.79−5 5.70−5 5.27−5 3.72−5 2.83−5 1.62−13
2 13 9.15−4 8.93−4 8.83−4 8.31−4 7.69−4 5.02−4 3.63−4 1.60−6
2 14 1.04−3 9.85−4 9.67−4 9.04−4 8.36−4 5.46−4 3.94−4 6.32−12
2 15 2.22−3 2.23−3 2.27−3 2.43−3 2.60−3 3.97−3 5.18−3 5.31−3
2 16 1.68−3 1.69−3 1.72−3 1.87−3 2.04−3 3.27−3 4.33−3 4.56−3
2 17 4.28−4 4.22−4 4.20−4 3.96−4 3.67−4 2.40−4 1.73−4 5.38−11
2 18 1.23−4 1.23−4 1.24−4 1.28−4 1.32−4 1.71−4 2.09−4 1.92−4
2 19 1.07−4 1.06−4 1.07−4 1.05−4 1.02−4 9.87−5 1.05−4 8.14−5
3 4 2.74−4 2.20−4 1.66−4 8.81−5 7.60−5 7.91−5 8.95−5 8.80−5
3 5 7.84−5 7.02−5 6.01−5 3.01−5 2.22−5 1.16−5 8.42−6 3.33−14
3 6 4.08−4 3.06−4 2.52−4 1.65−4 1.43−4 9.54−5 7.29−5 4.03−6
3 7 1.06−3 1.05−3 9.54−4 7.80−4 7.15−4 5.01−4 3.82−4 8.88−14
3 8 8.97−5 6.41−5 5.03−5 3.28−5 2.88−5 1.95−5 1.50−5 6.36−14
3 9 1.58−3 1.45−3 1.38−3 1.34−3 1.34−3 1.45−3 1.53−3 1.98−3
3 10 2.38−4 2.24−4 2.17−4 1.99−4 1.84−4 1.21−4 8.78−5 1.53−6
3 11 2.87−4 2.56−4 2.37−4 2.10−4 1.95−4 1.39−4 1.06−4 4.63−13
3 12 2.42−3 2.09−3 2.01−3 2.00−3 2.04−3 2.31−3 2.49−3 3.07−3
3 13 1.29−3 1.11−3 1.06−3 9.65−4 8.97−4 6.42−4 5.22−4 1.38−4
3 14 2.54−3 2.21−3 2.12−3 1.96−3 1.86−3 1.56−3 1.48−3 8.04−4
3 15 1.12−3 1.10−3 1.09−3 1.06−3 1.01−3 8.96−4 8.82−4 5.78−4
3 16 7.07−4 7.03−4 7.09−4 7.41−4 7.75−4 1.07−3 1.35−3 1.34−3
3 17 3.72−3 3.70−3 3.72−3 3.80−3 3.88−3 4.83−3 5.83−3 5.33−3
3 18 4.37−3 4.40−3 4.47−3 4.78−3 5.12−3 7.79−3 1.01−2 1.04−2
3 19 1.29−3 1.29−3 1.30−3 1.34−3 1.37−3 1.78−3 2.18−3 2.07−3
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Fig. 5. Comparison of electron impact collision strengths for K-shell excitation in Fe  computed with the  method. The left panels
depict collision strengths for the 1–8 and 1–14 transitions computed without damping. The effects of radiation and spectator Auger dampings
can be appreciated in the middle and right panels, respectively.

Υr(1) =
4g f
∆E

(31)

where g f is the weighted oscillator strength for the transition.
Similarly, for a forbidden transition the scaling relations are
given by

Tr =
κT/∆E

κT/∆E + c
(32)

Υr(Tr) = Υ(T ) (33)

with the following limit points:

Υr(0) = Ω(0) (34)

Υr(1) = ΩCB (35)

where ΩCB is the Coulomb–Born high-energy limit. The g f
and ΩCB have been computed with  with ap-
proximation AST1.

In Fig. 6 the present scaled effective collision strengths for
transitions arising from the ground state are compared with pre-
vious work. The data by Sampson et al. (1985) and Ballance
et al. (2001) have been excluded because the former is practi-
cally the same as Goett et al. (1984) while the latter have been
superseded by Whiteford et al. (2002). It can be seen that the
general agreement is very good: for Whiteford et al. (2002) and
our results, it is ∼10% except at low temperatures (<106 K) in
the forbidden (1–4) and intersystem (1–6) transitions. The in-
creases are due to the contributions from n = 3 resonances

that have been taken into account by Whiteford et al. which
are also significant for transitions with very small (<10−5) col-
lision strengths. The discrepancies (∼20%) with the data by
Bely-Dubau et al. (1982) in the 1–4 transition are perhaps due
to their implementation of the Breit–Pauli corrections.

11. Inner-shell photoabsorption
and photoionization of Fe XXIII

The inner-shell photoabsorption cross section of the Fe 
ground state has been computed with  using the same
19-level Li-like target model described in Sect. 10. As shown
in Fig. 7a, the cross section is dominated by a series of sym-
metric resonances of constant width that cause the smearing
of the K edge. This unusual resonance behavior, as explained
by Palmeri et al. (2002), is a consequence of the dominance
of Kα and KLL dampings. When such damping is neglected
(see Fig. 7b), only the lowest n = 2 resonance array is ac-
curately represented with our n = 2 target model whereas
the widths of the higher components are markedly under-
estimated and decrease with n maintaining edge sharpness.
Previous close-coupling work on the K shell photoionization
of Be-like Fe (Berrington et al. 1997; Ballance et al. 2001)
have neglected Auger damping, and therefore predict narrower
high-n resonances and thus a sharp edge. The present total
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Fig. 6. Comparison of electron impact effective collision strengths using the reduced scales of Burgess & Tully (1992) (see Sect. 10). Squares:
distorted-wave data by Bely-Dubau et al. (1982). Filled circles: Coulomb–Born–Exchange data of Goett et al. (1984). Filled triangles: 
calculation by Whiteford et al. (2002). Filled squares: present  results. The discrepancies between the  results at low temperatures
are believed to be due to different target representations.

photoabsorption cross section can be accessed online from the
TIPTOP1 database.

A further key point to make is that when damping is fully
taken into account the inner-shell photoabsorption and pho-
toionization processes must be treated separately. In the former,
the integrated cross section under the resonance must remain
constant in spite of the broadening caused by damping so as
to conserve oscillator strength. In the latter, the cross section is
actually reduced since radiation damping leads to radiative de-
excitation instead of photoionization. Unfortunately, there is as
yet no formal procedure to separate the radiative de-excitation
component in .

An alternative method is to compute photoabsorption and
photoionization cross sections with  by esti-
mating a central-field background cross section and making use
of the isolated resonance approximation to compute resonance
positions, radiative decay rates and Auger widths for all levels
with configurations 1s2l2l′nl′′. Assuming Lorentzian profiles,
resonances in photoabsorption and photoionization cross sec-
tions can be approximated by the expressions

σabs =
g f (Γr + Γa)

(E − Ek)2 + 1/4(Γr + Γa)2
(36)

1 http://heasarc.gsfc.nasa.gov/topbase

and

σion =
g fΓa

(E − Ek)2 + 1/4(Γr + Γa)2
, (37)

where g f is the weighted absorption oscillator strength, Γ r

and Γa are respectively the radiative and Auger widths, and
E and Ek the photon and resonance energies. In Fig. 8 the
photoabsorption and photoionization cross sections calculated
with  are depicted. The attenuated resonance
heights in the photoionization can be appreciated (see Fig. 8b),
and a good quantitative resemblance is found for the former
with that obtained with  (see Figs. 7a and 8a).

Partial photoionization cross sections of the Fe 
ground state leaving the Li-like remnant in a K vacancy state
are displayed in Fig. 9. Only the stronger transitions are in-
cluded where it is seen that the transition to the 1s2s2 2S1/2

level dominates. Since the radiative transition rates for this
state are an order of magnitude lower than its Auger width
(see Tables 4 and 6), the most probable final state in its decay
tree is the ground state of Fe . Therefore, the inner-shell
photoionization of the ground state of Fe  yields a double
ionization rather than a satellite line. Furthermore, since the
1s22s2p 3P0

0 and 3P0
2 excited states of Fe  are metastable,

their photoionization contribution should be in principle in-
cluded in models. However, unlike the ground state, their
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Fig. 7. Total photoabsorption cross section of the ground state of
Fe . The upper panel a) depicts the cross section computed
including radiative and spectator-Auger damping effects. The lower
panel b) shows the same cross section when these effects are neglected
for resonances with n > 2.

photoionization leaves the ion in K levels with strong radiative
channels that produce satellite lines.

12. Summary and conclusions

As a start in a project to compute atomic data for the spectral
modeling of Fe K lines, we have carried out extensive calcu-
lations and comparisons of atomic data for the K spectrum of
Li-like Fe . The data set includes energy levels, radiative
and Auger rates, collision strengths, and total and partial pho-
toionization cross sections. Primary aims have been to select an
applicable computational platform and an efficient strategy to
generate data sets which are as accurate and complete as possi-
ble for other ions of the Fe isonuclear sequence.

We have studied several physical effects, namely or-
bital representations, core relaxation, CI, relativistic correc-
tions, cancellation, semi-empirical corrections, and the damp-
ing of resonances by radiative and spectator Auger decays.
For an N-electron ion, we have found that the most realistic
representation is to have different orbital bases for the K-
vacancy states, on the one hand, and for the valence states of
the N- and (N − 1)-electron systems on the other. This is avail-
able in , but most other codes use orthogonal orbital bases
for computational efficiency. In the case the ,
which uses a distorted-wave approach to compute Auger rates,
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Fig. 8. Comparison between the a) photoabsorption cross section and
the b) photoionization cross section of the ground state of Fe 
computed with  assuming Lorentzian resonance pro-
files.

orbitals of the (N − 1)-electron system must then be used. Core
relaxation leads to increases in the radiative and Auger widths
no larger than 10%.

Level coupling within the n = 2 complex has been found
to be essential, thus seriously questioning the reliability of the
atomic model adopted by Lemen et al. (1984). CI from higher
complexes contributes negligibly. Contributions from the two-
body relativistic operators, both fine structure and non-fine
structure, play a conspicuous role in the decay of K-vacancy
states of this ion, particularly in the Auger pathways. Electron
correlation could be then interpreted as being highly magnetic:
bound–free spin–spin effects have been shown to be important
within the n = 2 complex and specially critical for the Auger
decay of the metastable 1s2s2p 4P0

5/2 state. This state is also
shown to decay radiatively through forbidden M1 and M2 tran-
sitions, the former requiring a relativistic corrected transition
operator to avoid errors in the line strength of several orders
of magnitude. In this highly ionized magnetic scenario, com-
puter programs that do not include a formal numerical imple-
mentation of the Breit interaction, or neglect it, have limited
applicability. Such is the case of  and . Some of
the large discrepancies found for the smaller rates have been
attributed to strong cancellation effects, and therefore have
been excluded from accuracy ratings. Fine tuning has been
found to be a useful option to attain high numerical accuracy,
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Fig. 9. Partial photoionization cross sections from the ground level of Fe  leaving Fe  in a K-vacancy state.

particularly for line identification and to render intersystem
couplings that can be very sensitive to level separations.

The present  calculations are an indepen-
dent validation and refinement of that performed in COR; the
level of agreement found at the different stages confirms this
assertion. The excellent accord also obtained with the radiative
rates by SAF allows us to suggest a ranking of 10% for the
present A-values. On the other hand, the fairly large discrep-
ancies with the SAF Auger rates are believed to be caused by
their approximate treatment of the Breit interaction in terms of
screening constants. We therefore rank the present autoioniza-
tion data at better than 15%. We can also conclude by compar-
ing with SAF that the attained precision for the K-vacancy level
energies of ±2 eV is a representative lower bound for current
numerical methods. This however implies fine tuning that relies
on spectroscopic measurements. Since complete experimental
level structures are not available for most systems, further ex-
periments would be welcome.

Both radiative and spectator Auger dampings have been
taken into account in the calculation of K-shell photoabsorp-
tion and electron excitation processes. In photoabsorption, res-
onances converging to the K threshold acquire a peculiar be-
havior that leads to edge smearing which, as discussed by
Palmeri et al. (2002), has diagnostic potential in astrophysi-
cal plasmas. With regards to electron excitation, resonances are
practically washed out, thus simplifying target modeling or the
choice of a suitable numerical approach. This assertion is sup-
ported by the good agreement (10%) of the present excitation
rates with the Coulomb–Born–Exchange results of Goett et al.
(1984) and with those in the R-matrix calculation by Whiteford
et al. (2002) who used a more refined target. We have also
found that the ground state of Fe  is mainly photoionized
to the 1s2s2 2S1/2 K level of Fe  which rapidly autoionizes
rather than fluoresces. Thus Kα emission from a Fe Li-like ion
is mainly the result of electron impact excitation and dielec-
tronic recombination.
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The approach we have taken in our study of the Fe 
K vacancy states is based on the use and comparison of results
of several computational platforms. We conclude that, among
the codes available to us, for Auger, radiative and structure
calculations in this ion the most accurate results are obtained
using  plus TEC. For electron impact excita-
tion we find good agreement between  and the CBE re-
sults, owing to the fact that damping reduces the importance
of resonances. For scattering of both electrons and photons
we conclude therefore that  (including damping) is the
platform of choice. The multi-platform approach has proven
to be useful in elucidating the physics involved, and has been
used previously by COR and SAF and more recently by Savin
et al. (2002). We have also produced what we feel is, on the
whole, an accurate and consistent dataset for atomic data for
the Fe  K vacancy states, although a few of our computed
quantities are in less good agreement with experiment than are
those of SAF or MCDF. This work has given us confidence in
the use of these tools, and the multi-platform approach, when
applied to the rest of the Fe isonuclear sequence.

The present data sets can be accessed on line from the
TIPTOP2 database.
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